Managing Wine Aroma

Enology and Viticulture
APPALACHIAN STATE UNIVERSITY

wine.appstate.edu

Seth Cohen
Appalachian State University
Director of Enology / Fermentation Sciences

February 5, 1012

Aroma compounds in grapes are responsible for determining the varietal character or *typicity* of wine.

Like other animals, aromas trigger responses in humans of ‘like’ and ‘dislike’. Often difficult to describe due to many factors; vast exposure to aromas and aromas that are familiar but not experienced often.

Winemakers goal is to produce a *clean wine*, with *varietal distinction* (when applicable). Generally focus on *maximizing* aroma intensity and complexity while *minimizing* aromas that may dominate, inhibit, or produce a negative perception (faults).
As plants and animals have evolved they have taken advantage of volatile compounds as a means of interacting from a distance.

This eliminates the requirement for physical proximity for interactions.
Wine Production - Players, Factors and Influences

1° Grapes - Variety, age, season, climate, H2O, integrity, nutrition, yield, microorganisms / flora, cultural practices...

2° Yeast and Bacteria (*enzymes*) – Species, population, growth conditions (pH, temp., O₂ etc.), substrates, time...

3° Aging – Time and conditions, oxygen, wood / aging vessel, yeast and bacteria, substrates (1° Aroma)...
Grapes Contribute Aroma

Volatile compounds -
Synthesized and/or modified intracellular; active aroma compounds.

Non-Volatile Precursors –
Fatty acids/amino acids, carbohydrates, phenolics, various hydrocarbons (terpenoids, acids, esters, aldehydes etc.) that are modified extracellular (enzymatic, chemical, and combinations) to yield *active* aroma compounds.
Berry Physiology and Compartmentalization

Aroma compounds and precursors are primarily synthesized within the exocarp or skin, although some are produced in the leaves. Some compounds can be found in the mesocarp or flesh and following loss of cellular integrity.
Berry Development

Grape berry development follows a multi-phase progression. This is generally broken down into a stage of **cell division**, a **lag phase** and a **cell enlargement** phase.
More on Berry Development

Typical aroma descriptors of berries and juice during development:

Fruit Set to Veraison
Minimal aroma
- Minty/Spicy
- Vegetal
- Green

Véraison to Full Color
- Aroma develops
- Minty/Spicy
- Vegetal
- Green
- Some Floral
- Some Fusel/Solvent
- Herbaceous

Full Color to Seed Viability
- Loss of Green
- Some minty/spicy
- Loss of Vegetal
- More Floral
- Development of Fruit Aroma
- Varietal Character Develops
- Some esters/alcohols

Late Harvest
- Loss of Floral
- Dried Fruit
- Dark Fruit
- Tropical
- Spicy
- Earthy, Musty

Berry Ripening (Engustment)
- Varietal Character Strongest
- Fruity Aromas/Esters
- Floral
- Earthy or Spicy
- Loss of Vegetal*
- Loss of Green
- Tropical
Major Classes of Aroma Compounds

- **Terpenoids**
 (Linalool)

- **Norisoprenoids**
 (β-Ionone)

- **Pyrazines**
 (i.e. 2-ethyl-3-methoxypyrazine)

- **Phenols**
 (4-vinyl-phenol)

- **Esters**
 (methyl anthranilate)

- Other compounds (alcohols, aldehydes, acids via enzymatic or chemical modifications)
Terpenoids

Terpenoids one of the more abundant grape aroma compounds. (linalool, geraniol, citronellol - floral and tropical aromas)
- Stored and transported as water soluble glycosides (non-volatile).
- Increase with moderate sun exposure; precursor to carotenoids

C13 Norisoprenoids

Structurally related to the terpenoids, norisoprenoids come from the degradation of carotenoids. (-ionone, -damascenone ; fruity and floral aromas)
- Generally produced after veraison (decline / degradation of carotenoids).
- Most compounds glycosylated (bound form).
Pyrazines

Pyrazines are **nitrogen** containing compounds often associated with herbaceous, vegetative or nutty aromas.

\[3\text{-}alkyl\text{-}2\text{-}methoxy = \text{roasty/nutty}\quad 3\text{-}isobutyl\text{-}2\text{-}methoxy = \text{bell pepper}\]

- Thought to degrade late in berry maturation due to light/thermal degradation.
Volatile Phenols

Volatile phenolics generally stem from the Shikimate pathway (*like tannins*).
- Some amino acids can be direct volatile precursors.
- Other phenolics can be precursors to aroma compounds (cinnamic acid, coumaric acid, benzoic acid).
- Hydrolysis and modification of phenols can lead to aromatics such as ethyl-phenol and ethyl-quaiacol (*Bretannomyces* spp).

Esters

Esterification between alcohol and carboxylic acids, generally fruity, “sweet” aromas.
- Although many are a result of fermentation some are produced in the plant.
- Methyl anthranilate (*Concord grapes*) results from reaction between MeOH and anthraniloyl CoA.
- Ester formation usually *accompanies fruit ripening*, when enzymes are active.
Metabolism of Fatty Acids

Fatty acid metabolism (e.g. linolenic, linoleic) responsible for many distinctive esters, alcohols, aldehydes, and lactones in fruit *(good and bad).*

- Several pathways active during *berry ripening*
- Result in lactones (Tropical fruit)

Metabolism of Amino Acids

Amino acids can be direct precursors to volatile aroma compounds.

- Characteristic aroma of **Sauvignon Blanc** comes from several **thiols** *(S)*;
 - 4-mercapto-4-methylpentan-1-ol (citrus zest)
 - 3-mercaptohexan-1-ol (grapefruit and passion fruit)
 - p-mentha-8-thiol-3-one (cat urine; *cat pee ketone*)

Released from **cysteine** precursors.
Managing Grape Aroma

Our ability to influence wine aroma in the vineyard...
- Ripeness (Obviously easier said than done)
- Sun exposure (Moderate exposure vs. shade or open fruiting zone)
- Vine Nutrition
- Vine water status
- Vine vigor / crop load / canopy management
- Vine age / maturity
- Grape Variety
- Biotic Stress / Berry Integrity

Treatment of grapes in vineyard, during harvest, transport and crushing
 Physical Stress, Temperature, SO2, Oxygen, Storage Time

 Keeping berries in-tact, undamaged, and at low temperatures is first line of defense.

 Discourage / manage unwanted oxidation and enzymatic modifications in general.
Wine Secondary Aroma: Fermentation Bouquet

Once grapes are harvested and delivered to crush pad, assess condition of fruit to determine subsequent production steps.

The development of aromas from this point until aging is considered 2° aroma.

The activity of yeast, bacteria, enzymes, and related chemical reactions during fermentations.

The starting point for all of this are the grape-based compounds (1° aroma).

How do we get what we want out of the grapes and what can the yeast / microbes contribute to wine aroma as well?

Assuming we have done what we can in the vineyard (in a given year)... What tools do we have to make the absolute best of what we have at hand!
Skin Contact – Maximizing extraction of potential aroma components from fruit

White wines: Definitive aroma impacts, often followed by light fining (e.g. PVPP)

Rose: Similar process, care to not ‘over-extract color’, fining.

Glutathione: Natural antioxidant (commercially available), aids in preserving aroma especially in conjunction in proper oxygen management. (*PVW, May/June, 2010*)

Reds: Not so much an issue- but Cold Soak? No definitive benefit per se (for aroma) – *Whole Berry / Whole Cluster %*

Saignée: Common tool for managing solid : juice ratio (*both under- and over-ripe scenarios*)

Oxygen Management: Important *pre-fermentation* and *once primary AF is complete* – Proper use of SO₂, enological tannins, and inert gases CO₂ (Dry Ice), N₂, Ar

Enzymes: Typically *cell-wall degrading enzymes*, improve extraction and potentially liberation of aroma compounds
During Fermentation

YEAST – Yeast selection may be one of the most influential decisions regarding aroma development post-harvest (2° aroma)

Development of a *fermentation bouquet* is one element that can provide a ‘unique’ profile for your winery.

During yeast metabolism, enzymes are excreted to aid in increasing availability of nutrients etc.
Metabolism of amino acids, fatty acids, production of alcohols and esters
VERY Dependent upon **YAN** *(Yeast Available Nitrogen)*

To OPTIMIZE yeast performance, we consider N as well as other yeast nutrients (vitamins, fatty acids, sterols); inactivated yeast products.

Without proper nutrition, we encounter **H₂S** production (“reduction”, *rotten egg*).
Want a stress-free fermentation and steady reproductive growth cycle

Yeast search for sources of N for growth, can metabolize sulfur-containing amino acids (cysteine) liberating H₂S.
Temperature: Yeast *WILL work faster at higher temps*, but consequences are not ideal (except for biofuels).

Typically looking for moderate to low temps; 20C/68F, avoiding temps near 30C/85F).

- 1- Regulate yeast activity to reduce stress aromas
- 2- Avoid driving off volatile components
- 3- Time for production and stabilization of *positive* aroma compounds

Selection of Yeast is made much easier by the abundance of well-characterized commercially available yeasts (*native yeasts in your cellar*).

Pay specific attention to profiles: Temperature range, YAN requirements / H2S production, Ester production, ML compatible, suggesting grape varietal → **TRIALS**!

Breaking wines into lots and **blending** back is a useful way to build complexity from different yeasts.

Several *yeast hybrids and yeast blends* on the market under proprietary names *Harmony, Alchemy, EZ Ferm*
During Fermentation

Monitor fermentations constantly; 2x / day
Looking for **development of stinky aromas** (H₂S) indicating yeast stress
Easy to avoid with **oxygen incorporation** (during active ferment)
 drain and return, pump-over, punch down
If adding N; try to **get a handle on starting YAN** (FAN, Ammonia ~ 250ppm +)
 Plan additions of DAP + Nutrients, **avoid heavy DAP** additions at onset

All this said, remember that not every wine is looking for elevated fermentation bouquet, may want a neutral profile to accent varietal character

Pressing - Pressing time can also influence wine aroma
Pressing before dry (natural CO₂) versus **extended maceration**.

At the end of AF, **oxygen becomes an enemy** in most cases.
Simply trying to **avoid premature loss of fresh aroma** among other damages due to oxidation.
Malo-lactic or secondary fermentation:
This is a decision based on style and stability
Not too many choices for strain (*Oenococcus oeni*)
Determine **malic acid content** after AF, is it even an issue?

ML fermentation can result in notable ‘buttery’ notes due to production of **diacetyl**.
Metabolism of *Citric acid* (Acetolactate decarboxylase : divert diacetyl pathway)

Use of **lysozyme** effective in inhibiting ML bacteria (gram +) as well as some other potential spoilage microbes.

Sur Lies aging: aside from MF/Tecture, yeast lees contribute to aroma of wine
(some ester / fruity aromas released)

Continue secondary or aging in **tank or barrel**?
Aging and Storage: Tank vs Barrel
Matter of temperature control (chilling)
Oxygen ingress
Oak flavor / aroma contributions

Bulk aging and storage will result in *less variability* when blended back at bottling.

Use of **barrels or smaller lots** allows for specific attention and differential treatment contributing to complexity – *More Work, Risk Aversion?*

Aging and Development tools:
- **Enzymes** (liberate bound aroma compounds during aging / bottling)
- **Tannins**
- Proper SO_2 / O_2 management
- Vigilance during storage (**VA and oxidation critical!**)
- Time before bottling
Packaging

The last step (hopefully) between you and the consumer

The right tool for the job:

What style or type of aromas do you intend to deliver?
Young, aromatic (2° forward) wines may not need to mature in-bottle.

Natural cork will allow for a slow ingress of O₂ over time
Technical stoppers / screw caps have come very far in delivering the functionality of cork without the risk / costs associated

Cost SHOULD NOT BE AN ISSUE!!! (my 2 cents)
Deliver the wine you intend to deliver (intended age)

Tri-chloroanisole : *One* issue with cork
Changes in treatment / cleaning of cork has lowered incidence.
Avoid Cl at all times in the winery (not only from cork)
It is well accepted that **not all wines benefit from the same Oxygen content** at bottling (DO) or from the same ingress rate over time.

(aroma profile, tannins/antioxidants/SO2)

Progress is being made to characterize the changes in aroma relating to oxygen in solution.

Progress has also been made in producing technical stoppers that deliver oxygen at a prescribed rate.

DO measurements (accurate ones) are expensive and probably not realistic for small wineries.

Understand where **O₂ ingress** occurs (racking, transferring, **bottling**).

The bottom line

Be aware of aroma genesis

Be aware of aroma faults (masking potential)